
Complex Analysis: Midterm Exam

Aletta Jacobshal 01, Monday 17 December 2018, 09:00–11:00
Exam duration: 2 hours

Instructions — read carefully before starting
- Write very clearly your full name and student number at the top of the first page of each of your exam

sheets and on the envelope. Do NOT seal the envelope!
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas,

theorems, formulas, etc.) you must explain which results you are using and why the conditions for using
such results are satisfied.

- 10 points are “free”. There are 5 questions and the maximum number of points is 100. The exam grade is
the total number of points divided by 10.

Question 1 (15 points)

Prove that if a function f(z) = u(x, y) + iv(x, y) is differentiable at z0 = x0 + iy0 then the
derivative is given by

df
dz (z0) = ∂u

∂x
(x0, y0) + i∂v

∂x
(x0, y0).

Solution
Since the derivative f ′(z0) exists, by definition, the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

,

exists.
Let z = x+ iy0 so that we also have z − z0 = x− x0. Then z → z0 implies x→ x0 and thus we
have that

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

= lim
x→x0

u(x, y0) + iv(x, y0)− u(x0, y0)− iv(x0, y0)
x− x0

.

Re-arranging terms we find

f ′(z0) = lim
x→x0

u(x, y0)− u(x0, y0)
x− x0

+ i lim
x→x0

v(x, y0)− v(x0, y0)
x− x0

.

By definition, the limits in the last expression are the corresponding partial derivatives of u and
v with respect to x at the point (x0, y0), that is,

f ′(z0) = ∂u

∂x
(x0, y0) + i∂v

∂x
(x0, y0).

Question 2 (20 points)

Prove that the function f(z) =
√
z + 1

√
z − 1 is discontinuous at z ∈ (−1, 1), that is, along

the open interval on the real axis between −1 and 1. You must check the limits of f(z) at
z ∈ (−1, 1).
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Here
√
z is the principal value e

1
2 Log z of the multi-valued z1/2. It is given that for −r < 0 we

have limt→0+
√
−r + it = i

√
r and limt→0−

√
−r + it = −i

√
r.

Solution
We compute the limits limy→0+ f(x+ iy) and limy→0− f(x+ iy) for x ∈ (−1, 1).
First, for x ∈ (−1, 1) we have

lim
y→0

√
z + 1 = lim

y→0

√
x+ 1 + iy =

√
x+ 1,

since x > −1 implies x+ 1 > 0 and Log (hence, also √) is continuous at (0,∞).
Then, for x ∈ (−1, 1) we have

lim
y→0+

√
z − 1 = lim

y→0+

√
x− 1 + iy = i

√
1− x,

where we used that y approaches 0 from above and since x < 1 we have x− 1 < 0. Similarly,

lim
y→0−

√
z − 1 = lim

y→0−

√
x− 1 + iy = −i

√
1− x,

where here we used that y approaches 0 from below.
Therefore, for x ∈ (−1, 1) we have

lim
y→0+

f(x+ iy) = i
√
x+ 1

√
1− x 6= lim

y→0−
f(x+ iy) = −i

√
x+ 1

√
1− x,

and thus the function is discontinuous at z ∈ (−1, 1).

Question 3 (20 points)

Compute
∫

Γ

zez

(z − iπ)2 dz first for the contour Γ = Γ1 and then for the contour Γ = Γ2 shown
below.

x

y

−π π 2π 3π 4π 5π

iπ

−iπ

Γ1 Γ2
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Solution
To compute the integral along Γ = Γ1 we use the generalized Cauchy integral formula with
n = 1, z0 = πi (which is inside Γ1), and f(z) = zez (which is an entire function and thus
analytic on and inside Γ1).
Then we find ∫

Γ1

f(z)
(z − πi)2 dz = 2πif ′(πi).

The derivative is
f ′(z) = (zez)′ = (z + 1)ez,

and thus
f ′(πi) = (1 + πi)eπi = −(1 + πi).

We conclude that ∫
Γ1

f(z)
(z − πi)2 dz = −2πi(1 + πi) = 2π2 − 2πi.

The integrand zez/(z−πi)2 is analytic on the complex plane except the point πi. In particular,
it is analytic on and inside Γ2. This implies that∫

Γ2

zez

(z − πi)2 dz = 0.

Question 4 (20 points)

Prove that on the positively oriented circle C given by |z + 1| = 2 we have∣∣∣∣∫
C

ez

z̄ − 3 dz
∣∣∣∣ ≤ 2πe.

NB: The inequalities that you use will either need to be proved (algebraically or geometrically)
or to be part of the theory presented in the book. In particular, the triangle inequality, in its
different forms, is considered known and so are inequalities between Re z, Im z and |z|. Fewer
points will be given if the necessary inequalities are established only “visually” (that is, by
looking at the right picture but without complete proof).

Solution
We use the Estimation Lemma to find∣∣∣∣∫

C

ez

z̄ − 3 dz
∣∣∣∣ ≤M`(C),

where `(C) = 4π is the length of the circle (which has radius 2), and M is any number such
that ∣∣∣∣ ez

z̄ − 3

∣∣∣∣ ≤M,

for all z ∈ C.
We need to find a value for M . For the numerator, ez, we have

|ez| = |ex||eiy| = |ex| = ex.

On the circle C we have
x+ 1 = Re(z + 1) ≤ |z + 1| = 2,
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implying x ≤ 1 and thus
|ez| = ex ≤ e.

For the denominator we find

|z̄ − 3| = |z − 3| = |z + 1− 4| ≥ ||z + 1| − | − 4|| = |2− 4| = 2.

Therefore,
1

|z̄ − 3| ≤
1
2 .

We conclude that for z ∈ C we have ∣∣∣∣ ez

z̄ − 3

∣∣∣∣ ≤ e

2 ,

and thus from the Estimation Lemma with M = e/2 and `(C) = 4π we find∣∣∣∣∫
C

ez

z̄ − 3 dz
∣∣∣∣ ≤ 2πe.

Question 5 (15 points)

A function f(z) on C is doubly periodic if there are non-zero complex numbers ω1 and ω2
such that:

(a) f(z + ω1) = f(z + ω2) = f(z) for all z ∈ C, and
(b) ω1 and ω2 are linearly independent over the reals, that is, ω2/ω1 6∈ R, implying that each

z ∈ C can be written as z = λ1ω1 + λ2ω2 with unique λ1, λ2 ∈ R.

Prove that if a doubly periodic function is entire then it must be constant.
Hint: Suppose that g : V → R, where V is a closed and bounded subset of C, is continuous. It
is then known that there is M > 0 such that −M ≤ g(z) ≤M for all z ∈ V .

Solution
We consider the function f in the parallelogram L defined by the vertices 0, ω1, ω2, ω1 + ω2,
including the vertices and the edges that connect them. Formally,

L = {t1ω1 + t2ω2 ∈ C : (t1, t2) ∈ [0, 1]2}.

L, being a parallelogram, is bounded. Moreover, because it includes its boundary points (the
edges and vertices), it is closed.
Since f(z) is entire, it is continuous on C, and thus |f(z)| is also continuous on C, and also on
the closed and bounded L. Therefore, there is M such that the continuous real-valued function
|f(z)| is bounded by M on L. In particular, 0 ≤ |f(z)| ≤M for all z ∈ L.
For any other point z ∈ C write

z = λ1ω1 + λ2ω2,

with λ1, λ2 ∈ R. Then write λ1 = k1 + t1 and λ2 = k2 + t2 where k1, k2 are integers and
t1, t2 ∈ [0, 1). This implies

z = (t1ω1 + t2ω2) + (k1ω1 + k2ω2).
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Since t1, t2 ∈ [0, 1) we conclude that z0 = t1ω1 + t2ω2 ∈ L. We have shown that for any point
z ∈ C there is a point z0 ∈ L and integers k1, k2 such that

z = z0 + k1ω1 + k2ω2.

Therefore,
f(z) = f(z0 + k1ω1 + k2ω2) = f(z0),

and thus
0 ≤ |f(z)| = |f(z0)| ≤M,

since z0 ∈ L.
This means that f(z) is a bounded entire function and Liouville’s theorem implies that it must
be constant.

Formulas

The Cauchy-Riemann equations for a function f = u+ iv are

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

The principal value of the logarithm is

Log z = Log |z|+ i Arg z.

The generalized Cauchy integral formula is

f (n)(z0) = n!
2πi

∫
Γ

f(z)
(z − z0)n+1 dz.
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